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Let C be a closed bounded convex subset of X with 0 being an interior point of
C and pC be the Minkowski functional with respect to C. Let G be a nonempty
closed, boundedly relatively weakly compact subset of a Banach space X. For a
point x # X, we say the minimization problem minC(x, G) is well posed if there
exists a unique point z� such that pC(z� &x)=*C(x, G) and every sequence [zn]/G
satisfying limn � � pC(zn&x)=*C(x, G) converges strongly to the point z� , where
*C(x, G)=infz # G pC(z&x). Under the assumption that C is both strictly convex
and Kadec, we prove that the set Xo(G) of all x # X such that the problem
minC(x, G) is well posed is a residual subset of X extending the results in the case
that the modulus of convexity of C is strictly positive due to Blasi and Myjak. In
addition, we also prove these conditions are necessary. � 2000 Academic Press

1. INTRODUCTION

Let X be a real Banach space of dimension at least 2 and X* be the dual
of X. For a nonempty subset, A/X, as usual, by int A and �A we mean
the interior of A and the boundary of A, respectively, while [x, y] stands
for the closed interval with end points x and y. We use B(x, r) to denote
the closed ball in X with center x and radius r. In particular, we put
B=B(0, 1).

Throughout this paper C will denote a closed bounded convex subset of
X with 0 # int C. Recall that the functional of Minkowski pC : X [ R with
respect to the set C is defined by

pC(x)=inf[:>0 : x # :C]. (1.1)
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For a closed subset G of X and x # X put

*C(x, G)= inf
z # G

pC(z&x). (1.2)

Given a nonempty closed subset G of X and x # X, Blasi and Myjak [3]
considered the minimization problem, denoted by minC(x, G), which
consists in fining points z� such that pC(z� &x)=*C(x, G). According to [3],
any such point z� is called a solution of the minimization problem
minC(x, G) and any sequence [zn]/G satisfying limn � � pC(zn&x)=
*C(x, G) is called a minimizing sequence of the minimization problem
minC(x, G). The minimization problem minC(x, G) is said to be well posed
if it has a unique solution, say z0 , and every minimizing sequence
converges strongly to z0 .

Let $C : [0, 2] [ [0, +�) be the modulus of convexity of C, i.e.,

$C(=)=inf {1& pC \x+ y
2 + : x, y # C and pC(x& y)�== . (1.3)

Under the assumption that $C(=)>0 for each = # (0, 2], it was proved in
[3] that, for every nonempty closed subset G of X, the set Xo(G) of all
x # X such that the problem minC(x, G) is well posed is a residual subset
of X.

In the present paper, using a completely different approach, which was
developed by Lau [11] and Borwein and Fitzpatrick [1], we prove that
if C is both strictly convex and Kadec, then the set Xo(G) of all x # X such
that the problem minC(x, G) is well posed is a residual subset of X
provided that G is a closed, bounded relatively weakly compact, nonempty
subset of X. We extend the result due to Blasi and Myjak [3]. In addition,
we also show these conditions made on C is necessary for Xo(G) to be
residual for every closed subset G of X. Further results in the same spirit
can be founded in [1�5, 7, 8, 11�13, 16].

2. PRELIMINARIES

For the reader's convenience we first recall some well known properties
of the Minkowski functional which follow immediately from the definition.

Proposition 2.1. For every x, y # X, we have

(i) pC(x)�0 and pC(x)=0 iff x=0;

(ii) pC(x+ y)�pC(x)+ pC( y);
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(iii) & pC( y&x)�pC(x)& pC( y)�pC(x& y);

(iv) pC(*x)=*pC(x), if *�0;

(v) pC(&x)= p&C(x);

(vi) pC(x)=1 iff x # �C;

(vii) pC(x)<1 iff x # int C;

(viii) + &x&�pC(x)�& &x&,

where and in the following

+= inf
x # �B

pC(x) and &= sup
x # �B

pC(x).

Definition 2.1. C is called strictly convex if �C=ext C, the set of all
extreme points of C.

From the definition, it follows that C is strictly convex if and only if for
any x, y # �C, pC(x+ y)= pC(x)+ pC( y) implies x= y.

Definition 2.2. C is called (sequentially) Kadec if any sequence
[xn]/�C with xn � x0 # �C weakly converges strongly to x0 .

Proposition 2.2. Define

qC(x*)=sup
x # C

(x*, x)

for every x* # X*. Then

(i) qC(x*+ y*)�qC(x*)+qC( y*) for every x*, y* # X*;

(ii) qC(*x*)=*qC(x*) for all *�0 and x* # X*;

(iii) pC(x)=max[(x*, x) : x* # X*, qC(x*)�1].

Proposition 2.3. Suppose that $C(=)>0 for each = # (0, 2]. Then

(i) C is strictly convex;

(ii) C is Kadec;

(iii) X is reflexive.

Proof. (i) The strict convexity results from Proposition 2.4 of [3].

(ii) Let [xn]/�C and x0 # �C satisfying xn � x0 weakly. Taking
x0* # X* with (x0*, x0)= pC(x0*)=1, we have that

2�lim sup
n � �

pC(xn+x0)� lim
n � �

(x0* , xn+x0)=2,
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and so

lim
n � �

$C( pC(xn+x0))=0.

Now the fact that $C(=)>0 for \= # (0, 2] shows limn � � pC(xn&x0)=0
and consequently, limn � � &xn&x0&=0, i.e., C is Kadec.

(iii) By James' theorem [9], it suffices to prove that for each x* # X*
with qC(x*)=1 there exists x0 # C such that (x*, x0) =1. For the end, let
[xn]/C satisfying

lim
n � �

(x*, xn)=1.

Then

2�lim sup
n, m � �

pC(xn+xm)� lim
n, m � �

(x*, xn+xm)=2,

and

lim
n, m � �

$C( pC(xn+xm))=0.

This, with the fact that $C(=)>0 for \= # (0, 2], implies that limn � �

pC(xn&xm)=0 and consequently, limn � � &xn&xm&=0 so that limn � �

&xn&x0&=0 and (x*, x0)=1 for some x0 # C. The proof is complete. K

Remark. Obviously, C is both strictly convex and Kadec if and only if
so is &C.

Finally, we also need the concept of Frechet differentiability and a result
on the Frechet differentiability of Lipschitz functions due to [15].

Definition 2.4. Let D be an open subset of X. A real-valued function
f on D is said to be Frechet differentiable at x # D if there exists an x* # X*
such that

lim
y � x

f ( y)& f (x)&(x*, y&x)
&y&x&

=0.

x* is called the Frechet differential at x which is denoted by D f (x).

Proposition 2.3. Let f be a locally Lipschitz continuous function on an
open set D of a Banach space with equivalent Frechet differentiable norm (in
particular, X reflexive will do). Then f is Frechet differentiable on a dense
subset of D.
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3. WELL POSED GENERALIZED BEST APPROXIMATION

Let G be a closed subset of X and x # X. Set

*+
C (x, G)= inf

z # G
pC(x&z). (3.1)

From Proposition 2.1(v), it follows that the problem minC(x, G) is well
posed if and only if the minimization problem min+

&C(x, G), which consists
in finding a point z� # G satisfying p&C(x&z� )=*+

&C(x, G), is well posed,
where the concepts of the solution, the minimizing sequence and the well
posedness are defined similarly.

For notational convenience, let dG(x)=*+
C (x, G). Then, we have

Proposition 3.1. (i) dG(x)&dG( y)�pC(x& y), \x, y # X;

(ii) |dG(x)&dG( y)|�& &x& y&, \x, y # X.

Let

inf[(x*, x&z): z # G & BC(x, dG(x)+$)]
Ln(G)={x # X"G : >(1&2&n) dG(x), for some $>0, x* # X*= ,

with qC(x*)=1

where BC(x, r)=[ y # X : pC(x& y)�r].
Also let

L(G)=,
n

Ln(G)

and let

there exists x* # X* with qC(x*)=1, such that for

0(G)={x # X"G : each =>0 there is $>0 so that inf[(x*, x&z) : = .

z # G & BC(x, dG(x)+$)]>(1&=) dG(x)

Obviously, 0(G)/L(G).

Lemma 3.1. L(G) is a G$-subset of X.

Proof. To show that L(G) is a G$ -subset of X, we only need prove that
Ln(G) is open for each n. Let x # Ln(G). Then there exist x* # X* with
qC(x*)=1 and $>0 such that

;=inf[(x*, x&z) : z # G & BC(x, dG(x)+$)]&(1&2&n) dG(x)>0.
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Let *>0 be such that *<min[ $
2 , ;

2] and fix y with &x& y&<*�&. For
$*=$&2*, from Proposition 3.1(i), we have

H=G & BC( y, dG( y)+$*)/G & BC(x, dG(x)+$).

Thus if z # H,

(x*, x&z) �;+(1&2&n) dG(x)

and

(x*, y&z)

=(x*, y&x)+(x*, x&z)

�;+(1&2&n) dG( y)& pC(x& y)&(1&2&n)(dG( y)&dG(x))

�;+(1&2&n) dG( y)& pC(x& y)& pC( y&x)

�;+(1&2&n) dG( y)&2& &x& y&

�(1&2&n) dG( y)+;&2*.

Then

inf[(x*, y&z) : z # H]>(1&2&n) dG( y)

and y # Ln(G) for all y # X with & &x& y&<*, which implies that Ln(G) is
open in X. K

The following factorization theorem due to Davis, Figiel, Johnson and
Pelczynski [6] plays a key role in the proof of the density of 0(G).

Theorem DFJP. Let K be a weakly compact subset of a Banach space
Y with Y=span K. Then there exists a reflexive Banach space R and a one
to one continuous linear mapping T: R [ Y such that T(B) #K.

Lemma 3.2. If G is a closed, boundedly relatively weakly compact,
non-empty subset of X, then 0(G) is dense in X"G.

Proof. Let x0 # X"G and dG(x0)>=>0. Let

K=weak&cl[(B(0, N) & G) _ [x0]],

where N=&x&+
3dG(x)

+ . Then K is weakly compact and if Y=span K, we
can apply Theorem DFJP to obtain a reflexive Banach space R and a one
to one continuous linear mapping T: R [ Y such that T(B) #K. Define

fG(u)=dG(Tu), for each u # R.
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Then fG is a Lipschitz function on R and so by Proposition 2.4 fG is
Frechet differentiable on a dense subset of R. Thus there exists differen-
tiable point v # R of fG with D fG(v)=v* such that y :=Tv # B(x0 , =). This
means that

lim
h � 0

dG(T(v+h))&dG(Tv)&(v*, h)
&h&

=0

and hence

lim
h � 0

dG( y+Th)&dG( y)&(v*, h)
pC(h)

=0.

Substituting tu for h in the previous expression and using Proposition 3.1
we have

(v*, u) �pC(Tu).

This shows v*=T*y* for some y* # Y*. Furthermore, ( y*, Tu) �pC(Tu)
for all u # R so that qC( y*)�1 since T has dense range. By Hahn�Banach
theorem we may extend y* to x* with qC(x*)�1. Now let [zn] be a mini-
mizing sequence in G for y. Then for each 1�t>0,

dG( y+t(zn& y))&dG( y)�pC( y+t(zn& y)&zn)&dG( y)

=(1&t) pC( y&zn)&dG( y)

= &tpC( y&zn)+[ pC( y&zn)&dG( y)].

Let tn=2&n+[ pC( y&zn)&dG( y)]1�2. Observe that

lim
n � �

dG( y+tn(zn& y))&dG( y)&tn(x*, zn& y)
tn

=0.

We have that

lim inf
n � �

[&pC( y&zn)+(x*, y&zn)]�0

and

dG( y)= lim
n � �

pC( y&zn)�lim inf
n � �

(x*, y&zn) ,
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which again shows qC(x*)�1. Thus qC(x*)=1 and

dG( y)= lim
n � �

(x*, y&zn) .

This implies y # 0(G) and proves the Lemma. K

Theorem 3.1. Suppose that C is both strictly convex and Kadec. Let G
be a closed, boundedly relatively weakly compact, non-empty subset of X,
then the set X +

0 (G) of all x # X such that the problem min+
C (x, G) is well

posed is a residual subset of X.

Proof. From Lemma 3.1 and 3.2 it suffices to prove that for each
x # L(G) the problem min+

C (x, G) is well posed. Now let x # L(G). We first
show that min+

C (x, G) has a unique solution. Suppose that min+
C (x, G) has

two solutions z0 , z1 . Since x # L(G), for each n, there exists xn* # X*,
qC(xn*)=1 satisfying

(xn*, x&z i) >(1&2&n) dG(x), i=0, 1

so that

pC(x&z0+x&z1)�lim sup
n � �

(xn*, x&z0+x&z1) �2 dG(x).

Thus, using the strict convexity of C we have z0=z1 , proving the
uniqueness.

Next, let zn # G be any minimizing sequence for x. Then x # Lm(G) for
any m=1, 2, ... . It follows that there exist $m>0, x*m # X* with qC(x*m)=1
such that

inf[(x*m , x&z) : z # G & BC(x, dG(x)+$m)]>(1&2&m) dG(x).

With no loss of generality, we may assume that zn � z0 weakly as n � �
for some z0 # X, since G is boundedly relatively weakly compact. Then we
have that

pC(x&z0)�lim inf
n � �

pC(x&zn)=dG(x).

We also assume that $n�$m if m<n and so zn # G & BC(x, dG(x)+$m) for
all n>m. Thus,

(x*m , x&zn) >(1&2&m) dG(x), \n>m
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so that

(x*m , x&z0)>(1&2&m) dG(x), \m.

Hence we have

pC(x&z0)�lim sup
m � �

(x*m , x&z0) �dG(x).

This shows that pC(x&z0)=dG(x). Now the fact that C is Kadec implies
that limn � � &zn&z0&=0 and z0 # G. Clearly, z0 is a solution of the mini-
mization problem min+

C (x, G). In fact we have proved the fact that any
minimizing sequence [zn]/G for x has a subsequence converging strongly
to a solution z0 of the problem min+

C (x, G). Thus the uniqueness of the
solution shows that zn converges to z0 strongly and completes the
proof. K

Theorem 3.1'. Suppose that C is both strictly convex and Kadec. Let G
be a closed, boundedly relatively weakly compact, non-empty subset of X,
then the set Xo(G) of all x # X such that the problem minC(x, G) is well
posed is a residual subset of X.

Corollary 3.1. Let X be reflexive. Suppose that C is both strictly
convex and Kadec. Then for any closed, non-empty subset G of X, the set
Xo(G) of all x # X such that the problem minC(x, G) is well posed is a
residual subset of X.

Corollary 3.2 [3]. Suppose that $C(=)>0 for \= # (0, 2]. Then for
any closed, non-empty subset G of X, the set Xo(G) of all x # X such that the
problem minC(x, G) is well posed is a residual subset of X.

Theorem 3.2. Suppose that either X is a Banach space which is not
reflexive or C is not Kadec. Then there exists a closed bounded non-empty set
G in X and an open non-empty subset U of X"G such that for each x # U the
problem min+

C (x, G) has no solution.

Proof. Case 1. X is not reflexive. By James' theorem [9] there is
x* # X* with 1=qC(x*)>(x*, y) for each y # �C. Let

G=B & [z # X : (x*, z)=0]

and

U=int B \0,
+

2&+++& [x # X : (x*, x) >0].
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For x # U, we will show that dG(x)=(x*, x) but the problem min+
C (x, G)

has no solution. Let yn # C such that lim (x*, yn)=1 so that we may
assume that (x*, yn) >1�2 for all n. If x # U, set

zn=x&
(x*, x)
(x*, yn)

yn .

Then

&zn&�&x&+2pC(x) &yn &�\1+2
&
++ &x&<1.

Thus zn # G and

dG(x)�lim inf
n

pC(x&zn)

=lim inf
n

pC \ (x*, x)
(x*, yn)

yn+
�lim inf

n

(x*, x)
(x*, yn)

=(x*, x) .

Suppose a point z # G such that dG(x)=(x*, x) = pC(x&z). Then
(x*, y) =1 for y= x&z

pC (x&z) which is a contradiction.

Case 2. C is not Kadec. By the definition, there exist a sequence
[ yn]/�C and a point y # �C such that yn � y weakly and infn{m

&yn& ym &>$ for some $>0. Let x* # X* with 1=qC(x*)=(x*, y). Then
limn (x*, yn) =1. With no loss of generality, we may assume that
(x*, yn) >1&2&2(n+1)>1�2 for all n. Set zn=(1+2&n) yn and define

G=.
n

Mn

where Mn=&zn+B(0, $�3) & [z # X : (x*, z)=0]. Then G is our desired
set. First, G is norm closed. In fact, if n{m and u # Mn , w # Mm we have

&w&u&�&yn& ym&&&ym&zm&&&yn&zn&&&zm+w&&&zn+u&

�$&2&m&2&n&$�3&$�3>$�9
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for sufficiently large m, n. Since each Mn is closed, G is closed. Next let
U=int B(0, +$

3(++2&)). For x # U we will show that dG(x)=1+(x*, x) but
the problem min+

C (x, G) has no solution. For x # U, set

wn=x&zn&
(x*, x)
(x*, yn)

yn .

Then

&wn+zn &�&x&+2pC(x) &yn&�\1+2
&
++ &x&<

$
3

while (x*, wn+zn) =0. Thus wn # Mn and

dG(x)�lim inf
n

pC(x&wn)

�lim inf
n

pC \zn+
(x*, x)
(x*, yn)

yn+
�lim inf

n \1+2&n+
(x*, x)
(x*, yn)+

=1+(x*, x).

Now if z # G then z # Mn for some n and

(x*, z)=(x*, &zn) =&(1+2&n)(x*, yn)

�&(1+2&n)(1&2&2(n+1))<&1.

Therefore

pC(x&z)�(x*, x)&(x*, z)>1+(x*, x)

and dG(x)=1+(x*, x) but the problem min+
C (x, G) has no solution for

x # U. The proof is complete. K

The following theorem is a generalization of the result on the charac-
terization of strongly convex Banach spaces, which is due to Konjagin
[10] and Borwein and Fitzpatrick [1].

Theorem 3.3. The following statements are equivalent

(1) X is reflexive and C is both strictly convex and Kadec.

(2) The function qC on X* is Frechet differentiable.

106 CHONG LI



(3) For any closed subset G of X, the set Xo(G) is a dense G$ subset
of X"G.

(4) For any closed subset G of X, the set Xo(G) is a dense subset of
X"G.

Proof. (1) O (3) results from Corollary 3.1, while (3) O (4) is trivial.

(4) O (1) by Theorem 3.2 it suffices to prove that C is strictly convex.
Suppose on the contrary that there exists two distinct elements, say a,
b # �C, such that pC(a+b)= pC(a)+ pC(b). Take x* # X* with q(x*)=1
and (x*, a+b) =2, so that (x*, a)=(x*, b) =1. Let

G=[x # X : (x*, x) =0].

Then for any x # X with (x*, x) >0 there are always multiple solutions to
the problem min+

C (x, G). Indeed, dC(x)=(x*, x) and a, b are two
solutions to the problem min+

C (x, G).
Now let us prove the equivalence of (1) and (2). For this end, let

C**=[x** # X** : (x*, x**)�qC(x*), \x* # X].

Then C/C** and qC(x*)=supx** # C**(x*, x**). Note that qC is a
Minkowski gauge on X*, i.e., a nonnegative continuous sublinear
functional. Thus from Proposition 5.11 of [14] we have

Proposition 3.2. qC is Frechet differentiable at x* with DqC(x*)=x**
if and only if x** # C** is weakly* strongly exposed by x* in the sense that
for any [xn**]/C**

(x*, xn**) � qC(x*) implies &xn**&x**& � 0.

(1) O (2) Observe that C**=C as X* is reflexive. Thus for any
[xn]/C with (x*, xn) � qC(x*), with no loss of generality, assume that
xn � x weakly for some x # C so that (x*, x)=qC(x*). This implies that
pC(xn) � pC(x). It follows from the fact that C is both strictly convex and
Kadec that &xn&x& � 0. Hence x # C is weakly* strongly exposed by x*
and qC is Frechet differentiable at x* with DqC(x*)=x.

(2) O (1) For any two x, y # �C with pC(x+ y)= pC(x)+ pC( y), let
x* # X* satisfying qC(x*)=1 and (x*, x+ y) =1. Then (x*, x) =
(x*, y) =1 which, by Lemma 5.10 of [14], implies that x= y=DqC(x*)
since qC is Frechet differentiable at x*, proving the strict convexity of C.
As to the reflexivity, by James' theorem [9], it suffices to show for each
x* # X* with qC(x*)=1 there exists x # C such that (x*, x) =1. Let
[xn]/C such that (x*, xn) � 1 and let x**=DqC(x*). Then we have
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&xn&x**& � 0 from Proposition 3.2 so that x** # C and (x*, x)=1,
completing the proof of the reflexivity. Finally, for the Kadec property of
C, let [xn]/�C satisfying xn � x0 weakly for some x0 # �C and let
x0* # X* with qC(x*)=1 and (x0*, x0) =1. Then x0=DqC(x*) and
(x*, xn) � 1. Using Proposition 3.2 again, we have &xn&x0& � 0. The
proof is complete. K

Remark. Theorem 3.3 extends the results due to Konjagin [10] and
Borwein and Fitzpatrick [1].
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