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Let C be a closed bounded convex subset of X with 0 being an interior point of
C and p. be the Minkowski functional with respect to C. Let G be a nonempty
closed, boundedly relatively weakly compact subset of a Banach space X. For a
point x € X, we say the minimization problem minc(x, G) is well posed if there
exists a unique point Z such that po(Z —x) = Ac(x, G) and every sequence {z,} =G
satisfying lim,,_, ., pc(z,—Xx) =21c(x, G) converges strongly to the point Z, where
Ac(x, G)=1nf,_ g pc(z —x). Under the assumption that C is both strictly convex
and Kadec, we prove that the set X,(G) of all xe X such that the problem
min(x, G) is well posed is a residual subset of X extending the results in the case
that the modulus of convexity of C is strictly positive due to Blasi and Myjak. In
addition, we also prove these conditions are necessary.  © 2000 Academic Press

1. INTRODUCTION

Let X be a real Banach space of dimension at least 2 and X* be the dual
of X. For a nonempty subset, 4 — X, as usual, by int 4 and 04 we mean
the interior of 4 and the boundary of A, respectively, while [ x, y] stands
for the closed interval with end points x and y. We use B(x, r) to denote
the closed ball in X with center x and radius r. In particular, we put
B=B(0,1).

Throughout this paper C will denote a closed bounded convex subset of
X with 0 eint C. Recall that the functional of Minkowski p.: X+ R with
respect to the set C is defined by

pe(x)=inf{a>0:xeaC}. (1.1)
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For a closed subset G of X and xe€ X put

Ac(x, G)=inf p(z—x). (1.2)

zeG

Given a nonempty closed subset G of X and x € X, Blasi and Myjak [3]
considered the minimization problem, denoted by min(x, G), which
consists in fining points Z such that p(Z— x) = A(x, G). According to [3],
any such point z is called a solution of the minimization problem
ming(x, G) and any sequence {z,} =G satisfying lim,_ . po(z,—x)=
Ac(x, G) is called a minimizing sequence of the minimization problem
min(x, G). The minimization problem min(x, G) is said to be well posed
if it has a unique solution, say z,, and every minimizing sequence
converges strongly to z,.

Let 6-:[0,2]+— [0, + 00) be the modulus of convexity of C, i.e.,

5C(e)=inf{1—pc<x;y>:x,yeCande(x—y)>s}. (L.3)

Under the assumption that J(¢) >0 for each ¢€ (0, 2], it was proved in
[3] that, for every nonempty closed subset G of X, the set X, (G) of all
x € X such that the problem min(x, G) is well posed is a residual subset
of X.

In the present paper, using a completely different approach, which was
developed by Lau [11] and Borwein and Fitzpatrick [1], we prove that
if C is both strictly convex and Kadec, then the set X,(G) of all x e X such
that the problem min(x, G) is well posed is a residual subset of X
provided that G is a closed, bounded relatively weakly compact, nonempty
subset of X. We extend the result due to Blasi and Myjak [3]. In addition,
we also show these conditions made on C is necessary for X, (G) to be
residual for every closed subset G of X. Further results in the same spirit
can be founded in [1-5, 7, 8, 11-13, 16].

2. PRELIMINARIES

For the reader’s convenience we first recall some well known properties
of the Minkowski functional which follow immediately from the definition.

ProrosITION 2.1.  For every x, y € X, we have

(1) pe(x)=0 and po(x)=0 iff x=0;
(i) pe(x+y)<pc(x)+pely);
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) =Py =x)<pelx) = pe(y) Spelx—p);
) pclix)=72pc(x), if 2=0;
) Pl —x)=p_c(x);
(vi) pe(x)=1iff xedC,
(vil) pe(x)<l iff xeint C;
(viil)  p [ xll <pe(x) <v x|,
where and in the following

u= inf p(x) and v=sup pc(x).

xe€0B xedB

DEerFINITION 2.1. C is called strictly convex if 0C=ext C, the set of all
extreme points of C.

From the definition, it follows that C is strictly convex if and only if for
any x, ye0C, pe(x+y) = pe(x) + pe(y) implies x = y.

DeriNITION 2.2, C is called (sequentially) Kadec if any sequence
{x,} =0C with x, - x, € 9C weakly converges strongly to x,.

PropoSITION 2.2. Define

gc(x*)=sup {x* x>

xeC

for every x* e X*. Then
(1) qe(x*+y*) <qc(x*) +qc(y*) for every x*, y* e X*;
(1) qe(Ax*)=Aqo(x*) for all 2. =0 and x* € X'*;
(i) pe(x) =max{{x* x> : x*e X* go(x*)<1}.

ProrosiTION 2.3.  Suppose that 6 (&) >0 for each ¢€(0,2]. Then
(1) C is strictly convex;
(1) C is Kadec;
(1) X is reflexive.
Proof. (i) The strict convexity results from Proposition 2.4 of [3].
(ii) Let {x,} =<0C and x,€0dC satisfying x, - x, weakly. Taking

x§ e X* with (x§, x¢) = pc(x§)=1, we have that

2=limsup po(x, +x0) = lim {x§&, x,+x¢> =2,

n— oo n— oo
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and so

lim dc(pc(x,+x0)) =0.

Now the fact that d.(¢) >0 for Vee (0,2] shows lim, _, , po(x,—Xx) =0
and consequently, lim,,_, ., ||x, — xo] =0, 1e., C is Kadec.
(ii1) By James’ theorem [ 9], it suffices to prove that for each x* e X*

with g(x*) =1 there exists x, € C such that {(x*, x,> = 1. For the end, let
{x,} = C satisfying

Iim {x*, x,>=1.

n— oo

Then

2=zlimsup po(x,+x,)= lim {(x* x,+x,>=2,

n, m— oo n, m— oo
and

lim J.(pdx,+x,))=0.

n, m— oo

This, with the fact that d.(¢) >0 for Vee(0,2], implies that lim,_ .
pc(x,—x,,)=0 and consequently, lim,_, ., ||x,—x,,/| =0 so that lim,,_,
Ix,—xoll =0 and {x*, x,> =1 for some x, € C. The proof is complete. ||

Remark. Obviously, C is both strictly convex and Kadec if and only if
sois —C.

Finally, we also need the concept of Frechet differentiability and a result
on the Frechet differentiability of Lipschitz functions due to [15].

DerFINITION 2.4. Let D be an open subset of X. A real-valued function
fon D is said to be Frechet differentiable at x € D if there exists an x* e X*
such that

i S =S = y =)
im =

0.
yox ly — x|

x* is called the Frechet differential at x which is denoted by Df(x).

ProposITION 2.3, Let f be a locally Lipschitz continuous function on an
open set D of a Banach space with equivalent Frechet differentiable norm (in
particular, X reflexive will do). Then f is Frechet differentiable on a dense
subset of D.
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3. WELL POSED GENERALIZED BEST APPROXIMATION

Let G be a closed subset of X and x € X. Set

Ad(x, G)=inf p(x—z). (3.1)

zeG

From Proposition 2.1(v), it follows that the problem min(x, G) is well
posed if and only if the minimization problem min * (x, G), which consists
in finding a point Ze G satisfying p_(x —2)=1% (x, G), is well posed,
where the concepts of the solution, the minimizing sequence and the well
posedness are defined similarly.

For notational convenience, let dg(x)=A1/%(x, G). Then, we have

ProposITION 3.1. (1) dg(x)—dg(y)<pc(x—y), Vx, ye X;
(i) |dg(x)—dg(y)<v|x—yl, Vx, ye X.

Let

inf{(x* x—z):ze G B(x,dg(x)+0)}
(G)=<xeX\G: >(1—-2"")dg(x), for some § >0, x*e X*
with go(x*) =1

where Bo(x, r)={yeX: po(x—y)<r}.
Also let
L(G)= () L.G)

and let

there exists x* € X* with g.(x*) =1, such that for
Q(G)=< xe X\G: each ¢ >0 there is 6 >0 so that inf{{x*, x—z):
zeG N Be(x,dg(x)+0)} >(1—¢) dg(x)

Obviously, Q(G) = L(G).

LemMA 3.1. L(G) is a Gs-subset of X.

Proof. To show that L(G) is a Gs-subset of X, we only need prove that
L,(G) is open for each n. Let xe L,(G). Then there exist x* e X* with
gco(x*)=1 and 6 >0 such that

B=inf{{x*, x—z) :ze GNB(x,dg(x)+3)} —(1—=27")dg(x)>0.
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Let 2>0 be such that A<min{$, 4} and fix y with ||x— y|<A4/v. For
0* =0 — 2/, from Proposition 3.1(i), we have

H=GnBdy,ds(y)+6*)cGnBo(x,dg(x)+9).
Thus if ze H,
(x*, x—zy=2f+(1-27")ds(x)
and
(x*y—z)
={x*, y—x) +<{x*, x—z2)

Zf+(1=27")ds(y) = pclx—y) = (1 =27")(dg(y) — dg(x))

Zp+(1-27")ds(y) = pc(x—y)—pc(y—x)

Zp+(1=27")dg(y)=2v [x—y|
=(1-27")dgs(y)+f—24

Then
inf{{x* y—z):zeH} >(1-27")dg(y)

and ye L,(G) for all ye X with v ||x — y| <4, which implies that L,(G) is
open in X. ||

The following factorization theorem due to Davis, Figiel, Johnson and

Pelczynski [6] plays a key role in the proof of the density of 2(G).

THEOREM DFIJP. Let K be a weakly compact subset of a Banach space
Y with Y =span K. Then there exists a reflexive Banach space R and a one
to one continuous linear mapping T: R— Y such that T(B) > K.

Lemma 3.2. If G is a closed, boundedly relatively weakly compact,
non-empty subset of X, then Q(G) is dense in X\G.

Proof. Let xo € X\G and dg(xy) >¢&>0. Let
K =weak —cl{(B(0, N)nG) U {x,} },

where N = ||x| + @. Then K is weakly compact and if Y =span K, we
can apply Theorem DFJP to obtain a reflexive Banach space R and a one
to one continuous linear mapping 7: R+ Y such that 7(B) > K. Define

fo(u)=dgs(Tu),  for each ueR.
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Then f; is a Lipschitz function on R and so by Proposition 2.4 f; is
Frechet differentiable on a dense subset of R. Thus there exists differen-
tiable point v e R of fg with D f;(v) = v* such that y := Tve B(x,, ¢). This
means that

de(T(v+h)) —dg(Tv) —{v*, k)

lim =0
h>0 2l
and hence
. dg(y+Th)—dg(y)—<{v* h)
lim =0.
h—0 pc(h)

Substituting fu for & in the previous expression and using Proposition 3.1
we have

v uy <pe(Tu).

This shows v* = T*y* for some y* e Y*. Furthermore, { y*, Tu) <p(Tu)
for all u € R so that ¢-(y*) <1 since T has dense range. By Hahn—-Banach
theorem we may extend y* to x* with g(x*) <1. Now let {z,} be a mini-
mizing sequence in G for y. Then for each 1 >1>0,

do(y+t(z,—y))—de(y)<pcly+tz,—y)—z,)—ds(y)
(I=1) pely—z,)—dg(y)
—tpc(y—z,)+[pc(y—z,)—ds(y)].

Let t,=2""+[pc(y—2z,) —ds(y)]"% Observe that

li dG(y+tn(Zn_y))_dG(y)_Zn<X*9 Zn_y>_
m =

n— oo t

n

We have that

11m1nf[ —pey—z,)+<{x*, y—2z,>1=0

"
and

do(y)=lim p(y—z,) <liminf{x* y—z,),

n— oo n— oo
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which again shows ¢-(x*)>1. Thus g-(x*)=1 and

de(y)= lim {x* y—z,).

n— oo

This implies y € 2(G) and proves the Lemma. ||

THEOREM 3.1. Suppose that C is both strictly convex and Kadec. Let G
be a closed, boundedly relatively weakly compact, non-empty subset of X,
then the set X (G) of all xe X such that the problem min}(x, G) is well
posed is a residual subset of X.

Proof. From Lemma 3.1 and 3.2 it suffices to prove that for each
x € L(G) the problem min/(x, G) is well posed. Now let x € L(G). We first
show that min/; (x, G) has a unique solution. Suppose that min /(x, G) has
two solutions z,, z;. Since xe L(G), for each n, there exists x} e X*,
qo(x¥)=1 satisfying

(x¥ox—zy>(1-2"")dg(x), i=0,1
so that

po(x—zog+x—zy)=limsup {(xF, x—zo+x—2z1) =22 dg(x).

n— oo

Thus, using the strict convexity of C we have z,=z,, proving the
uniqueness.

Next, let z, € G be any minimizing sequence for x. Then x e L,,(G) for
any m=1, 2, ... It follows that there exist d,, >0, x} € X* with ¢g(x})=1
such that

inf{{x}, x—z) :ze G B(x,dg(x)+3,,)} > (1 —=27")dg(x).
With no loss of generality, we may assume that z, - z, weakly as n —» o

for some z, € X, since G is boundedly relatively weakly compact. Then we
have that

Pe(x—zo) <liminf po(x —z,) =dg(x).

n— oo

We also assume that J,<J,, if m<n and so z, e GN B(x, dg(x)+9,,) for
all n>m. Thus,

xE, x—z,> >(1=-2"")dg(x), Vn>m
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so that
<xr>x:nx_20>>(1_2_m) dG(x)9 Vm.
Hence we have

Pc(x —zo) Zlim sup{xyy, x — ) = dg(X).

m — oo

This shows that po(x —zy) =dg(x). Now the fact that C is Kadec implies
that lim,, , . ||z, —zoll =0 and z, € G. Clearly, z, is a solution of the mini-
mization problem min/(x, G). In fact we have proved the fact that any
minimizing sequence {z,} = G for x has a subsequence converging strongly
to a solution z, of the problem minZ(x, G). Thus the uniqueness of the
solution shows that z, converges to z, strongly and completes the
proof. |

THEOREM 3.1°.  Suppose that C is both strictly convex and Kadec. Let G
be a closed, boundedly relatively weakly compact, non-empty subset of X,
then the set X,(G) of all xe X such that the problem min(x, G) is well
posed is a residual subset of X.

COROLLARY 3.1. Let X be reflexive. Suppose that C is both strictly
convex and Kadec. Then for any closed, non-empty subset G of X, the set
X,(G) of all xe X such that the problem min(x, G) is well posed is a
residual subset of X.

COROLLARY 3.2 [3]. Suppose that o-(¢)>0 for Vee(0,2]. Then for
any closed, non-empty subset G of X, the set X (G) of all x € X such that the
problem min(x, G) is well posed is a residual subset of X.

THEOREM 3.2. Suppose that either X is a Banach space which is not
reflexive or C is not Kadec. Then there exists a closed bounded non-empty set
G in X and an open non-empty subset U of X\G such that for each x € U the
problem min £ (x, G) has no solution.

Proof. Case 1. X is not reflexive. By James’ theorem [9] there is
x*e X* with 1 =¢g(x*) > (x*, y) for each yedC. Let

G=Bn{zeX:{(x*z)=0}
and

y2;
2v+pu

U=intB<0, >m{xeX:<x*,x>>0}.
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For xe U, we will show that dg(x)= (x*, x) but the problem min}(x, G)

has no solution. Let y, € C such that lim {x*, y,> =1 so that we may
assume that {x*, y,> >1/2 for all n. If xe U, set

(x*, x>
Z,=X———F—— Vn-
(X*, y,0

Then

v
20l < 120 4+ 2pe(x) Iyall < (1 +2ﬂ> Ix] <.

Thus z, € G and

dg(x)<lminf p(x—z,)

(X%, x) >
ey

*
<liminf<x*7’x>
n <X ’yn>

={x*, x).

=lim infpc<

Suppose a point zeG such that dg(x)=<x* x> =pc(x—z). Then

{x*, y> =1for y= ;=5 which is a contradiction.

Case 2. C is not Kadec. By the definition, there exist a sequence
{y,} €0C and a point yedC such that y,—y weakly and inf,_,,
Y= Yl >0 for some § > 0. Let x* € X* with 1 = g(x*)=<x*, y>. Then
lim, {(x*, y,>=1. With no loss of generality, we may assume that
(x*,y,>>1=272+D > 1/ for all n. Set z,=(14+2"") y, and define

G=\M,

where M, = —z,+ B(0,6/3) n{ze X : {x* z) =0}. Then G is our desired
set. First, G is norm closed. In fact, if n #m and ue M,,, we M,, we have

HW_MH = Hyn_ymH - Hym_ZmH - Hyn_ZnH - Hzm+WH - Hzn+uH

>S90 27" §/3-9/3>0/9
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for sufficiently large m, n. Since each M, is closed, G is closed. Next let

U=int B(0, #ﬁzv))' For xe U we will show that dg(x)=1+ {x*, x> but

the problem min/(x, G) has no solution. For x € U, set
(x*, x)
W, =X—Z,————< Vn.
X*, Y

Then

v 0
Wn+z, | < X[+ 2pc(x) [yull < <1 +2u> [ <3

while (x*, w,+z,> =0. Thus w, e M,, and

dg(x) <liminf p(x—w,)

(x*, x) >

<lim inf at
n pC<Z <X*a yn>y

<liminf<1 +27"+

n

{X*, x) >
{X*, v

=14 {x* x).
Now if z € G then ze M, for some n and

X,z =dx*, =z, = = (1 +27")x%, y,»
<—(1427)(1—2720+D) < 1,

Therefore
Pex—z)=<x*, x> —<{x* z)>1+<{x* x)

and dg(x) =14 <{x* x) but the problem min/(x, G) has no solution for
x € U. The proof is complete. ||

The following theorem is a generalization of the result on the charac-
terization of strongly convex Banach spaces, which is due to Konjagin
[10] and Borwein and Fitzpatrick [1].

THEOREM 3.3. The following statements are equivalent

(1) X is reflexive and C is both strictly convex and Kadec.
(2) The function qc on X* is Frechet differentiable.



WELL POSED APPROXIMATION PROBLEMS 107

(3) For any closed subset G of X, the set X,(G) is a dense Gz subset
of X\G.

(4) For any closed subset G of X, the set X (G) is a dense subset of
X\G.

Proof. (1)=(3) results from Corollary 3.1, while (3)=>(4) is trivial.

(4)=(1) by Theorem 3.2 it suffices to prove that C is strictly convex.
Suppose on the contrary that there exists two distinct elements, say a,
bedC, such that po(a+b)=pcla)+ po(b). Take x* e X* with g(x*)=1
and (x*,a+b) =2, so that {x* a) =<{x*,b) =1. Let

G={xeX:{x*x)=0}.

Then for any x € X with {x*, x> >0 there are always multiple solutions to
the problem min/(x, G). Indeed, do(x)=<x* x> and a, b are two
solutions to the problem min/ (x, G).

Now let us prove the equivalence of (1) and (2). For this end, let

CH*={x¥*e X**: (x* x**) <qo(x*), Vx*e X}.

Then Cc C** and go(x*)=sup,sscc=+{x* x**). Note that ¢, is a
Minkowski gauge on X* ie, a nonnegative continuous sublinear
functional. Thus from Proposition 5.11 of [ 14] we have

ProprosITION 3.2. ¢ is Frechet differentiable at x* with D go(x*)=x**
if and only if x** e C** is weakly* strongly exposed by x* in the sense that
Sor any {x}*} < C**

X, X070 = qe(x®)  implies  ||x;* —x**| = 0.

(I)=(2) Observe that C**=C as X* is reflexive. Thus for any
{x,} = C with {x* x,> = gc(x*), with no loss of generality, assume that
x,, —» x weakly for some x € C so that {x*, x> =¢(x*). This implies that
pc(x,) = po(x). It follows from the fact that C is both strictly convex and
Kadec that ||x,—x|| » 0. Hence x e C is weakly* strongly exposed by x*
and ¢, is Frechet differentiable at x* with Dgo(x*) = x.

(2)=(1) For any two x, yedC with po(x+ y)=pc(x)+ pc(y), let
x*e X* satisfying ¢o(x*)=1 and {(x* x+ y>=1. Then {(x* x)=
{x*, y> =1 which, by Lemma 5.10 of [ 14], implies that x=y=Dg(x*)
since g¢ is Frechet differentiable at x*, proving the strict convexity of C.
As to the reflexivity, by James’ theorem [9], it suffices to show for each
x*e X* with go(x*)=1 there exists xe C such that {(x* x> =1. Let
{x,} =C such that {x* x,>—>1 and let x**=Dg(x*). Then we have
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|x,—x**| >0 from Proposition 3.2 so that x**e C and <{x* x)>=1,
completing the proof of the reflexivity. Finally, for the Kadec property of
C, let {x,} c0C satisfying x, > x, weakly for some x,€dC and let
x§FeX* with go(x*)=1 and <{x§,x,)=1. Then x,=Dg(x*) and
{x*, x,> — 1. Using Proposition 3.2 again, we have |x, —x,| = 0. The
proof is complete. ||

Remark. Theorem 3.3 extends the results due to Konjagin [10] and

Borwein and Fitzpatrick [1].
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