On Well Posed Generalized Best Approximation Problems¹

Chong Li

Department of Applied Mathematics, Southeast University, Nanjing 210096, P. R. China E-mail: cli@seu.edu.cn

Communicated by Frank Deutsch

Received June 15, 1999; accepted June 2, 2000; published online October 11, 2000

Let *C* be a closed bounded convex subset of *X* with 0 being an interior point of *C* and p_C be the Minkowski functional with respect to *C*. Let *G* be a nonempty closed, boundedly relatively weakly compact subset of a Banach space *X*. For a point $x \in X$, we say the minimization problem $\min_C(x, G)$ is well posed if there exists a unique point \bar{z} such that $p_C(\bar{z}-x) = \lambda_C(x, G)$ and every sequence $\{z_n\} \subset G$ satisfying $\lim_{n\to\infty} p_C(z_n-x) = \lambda_C(x, G)$ converges strongly to the point \bar{z} , where $\lambda_C(x, G) = \inf_{z \in G} p_C(z-x)$. Under the assumption that *C* is both strictly convex and Kadec, we prove that the set $X_o(G)$ of all $x \in X$ such that the problem $\min_C(x, G)$ is well posed is a residual subset of *X* extending the results in the case that the modulus of convexity of *C* is strictly positive due to Blasi and Myjak. In addition, we also prove these conditions are necessary. (0, 2000) Academic Press

1. INTRODUCTION

Let X be a real Banach space of dimension at least 2 and X^* be the dual of X. For a nonempty subset, $A \subset X$, as usual, by int A and ∂A we mean the interior of A and the boundary of A, respectively, while [x, y] stands for the closed interval with end points x and y. We use B(x, r) to denote the closed ball in X with center x and radius r. In particular, we put B = B(0, 1).

Throughout this paper C will denote a closed bounded convex subset of X with $0 \in \text{int } C$. Recall that the functional of Minkowski $p_C: X \mapsto R$ with respect to the set C is defined by

$$p_C(x) = \inf\{\alpha > 0 : x \in \alpha C\}.$$
(1.1)

¹ This work is supported by the National Natural Science Foundations of China (Grant No. 19971013).

For a closed subset G of X and $x \in X$ put

$$\lambda_C(x, G) = \inf_{z \in G} p_C(z - x). \tag{1.2}$$

Given a nonempty closed subset G of X and $x \in X$, Blasi and Myjak [3] considered the minimization problem, denoted by $\min_C(x, G)$, which consists in fining points \bar{z} such that $p_C(\bar{z}-x) = \lambda_C(x, G)$. According to [3], any such point \bar{z} is called a solution of the minimization problem $\min_C(x, G)$ and any sequence $\{z_n\} \subset G$ satisfying $\lim_{n\to\infty} p_C(z_n-x) = \lambda_C(x, G)$ is called a minimizing sequence of the minimization problem $\min_C(x, G)$. The minimization problem $\min_C(x, G)$ is said to be well posed if it has a unique solution, say z_0 , and every minimizing sequence converges strongly to z_0 .

Let $\delta_C: [0, 2] \mapsto [0, +\infty)$ be the modulus of convexity of *C*, i.e.,

$$\delta_C(\varepsilon) = \inf\left\{1 - p_C\left(\frac{x+y}{2}\right) : x, \ y \in C \text{ and } p_C(x-y) \ge \varepsilon\right\}.$$
(1.3)

Under the assumption that $\delta_C(\varepsilon) > 0$ for each $\varepsilon \in (0, 2]$, it was proved in [3] that, for every nonempty closed subset G of X, the set $X_o(G)$ of all $x \in X$ such that the problem $\min_C(x, G)$ is well posed is a residual subset of X.

In the present paper, using a completely different approach, which was developed by Lau [11] and Borwein and Fitzpatrick [1], we prove that if *C* is both strictly convex and Kadec, then the set $X_o(G)$ of all $x \in X$ such that the problem $\min_C(x, G)$ is well posed is a residual subset of *X* provided that *G* is a closed, bounded relatively weakly compact, nonempty subset of *X*. We extend the result due to Blasi and Myjak [3]. In addition, we also show these conditions made on *C* is necessary for $X_o(G)$ to be residual for every closed subset *G* of *X*. Further results in the same spirit can be founded in [1–5, 7, 8, 11–13, 16].

2. PRELIMINARIES

For the reader's convenience we first recall some well known properties of the Minkowski functional which follow immediately from the definition.

PROPOSITION 2.1. For every $x, y \in X$, we have

(i)
$$p_{C}(x) \ge 0$$
 and $p_{C}(x) = 0$ iff $x = 0$;

(ii) $p_{C}(x+y) \leq p_{C}(x) + p_{C}(y);$

$$\begin{array}{ll} (\mathrm{iii}) & -p_{C}(y-x) \leqslant p_{C}(x) - p_{C}(y) \leqslant p_{C}(x-y); \\ (\mathrm{iv}) & p_{C}(\lambda x) = \lambda p_{C}(x), \ if \ \lambda \geqslant 0; \\ (\mathrm{v}) & p_{C}(-x) = p_{-C}(x); \\ (\mathrm{vi}) & p_{C}(x) = 1 \ iff \ x \in \partial C; \end{array}$$

- (vii) $p_C(x) < 1$ iff $x \in int C$;
- (viii) $\mu \|x\| \leq p_C(x) \leq v \|x\|$,

where and in the following

$$\mu = \inf_{x \in \partial B} p_C(x) \quad and \quad \nu = \sup_{x \in \partial B} p_C(x).$$

DEFINITION 2.1. C is called strictly convex if $\partial C = \text{ext } C$, the set of all extreme points of C.

From the definition, it follows that *C* is strictly convex if and only if for any $x, y \in \partial C$, $p_C(x + y) = p_C(x) + p_C(y)$ implies x = y.

DEFINITION 2.2. *C* is called (sequentially) Kadec if any sequence $\{x_n\} \subset \partial C$ with $x_n \to x_0 \in \partial C$ weakly converges strongly to x_0 .

PROPOSITION 2.2. Define

$$q_C(x^*) = \sup_{x \in C} \langle x^*, x \rangle$$

for every $x^* \in X^*$. Then

- (i) $q_C(x^* + y^*) \leq q_C(x^*) + q_C(y^*)$ for every $x^*, y^* \in X^*$;
- (ii) $q_C(\lambda x^*) = \lambda q_C(x^*)$ for all $\lambda \ge 0$ and $x^* \in X^*$;
- (iii) $p_C(x) = \max\{\langle x^*, x \rangle : x^* \in X^*, q_C(x^*) \leq 1\}.$

PROPOSITION 2.3. Suppose that $\delta_{C}(\varepsilon) > 0$ for each $\varepsilon \in (0, 2]$. Then

- (i) *C* is strictly convex;
- (ii) *C* is Kadec;
- (iii) X is reflexive.

Proof. (i) The strict convexity results from Proposition 2.4 of [3].

(ii) Let $\{x_n\} \subset \partial C$ and $x_0 \in \partial C$ satisfying $x_n \to x_0$ weakly. Taking $x_0^* \in X^*$ with $\langle x_0^*, x_0 \rangle = p_C(x_0^*) = 1$, we have that

$$2 \ge \limsup_{n \to \infty} p_C(x_n + x_0) \ge \lim_{n \to \infty} \langle x_0^*, x_n + x_0 \rangle = 2,$$

and so

$$\lim_{n \to \infty} \delta_C(p_C(x_n + x_0)) = 0.$$

Now the fact that $\delta_C(\varepsilon) > 0$ for $\forall \varepsilon \in (0, 2]$ shows $\lim_{n \to \infty} p_C(x_n - x_0) = 0$ and consequently, $\lim_{n \to \infty} ||x_n - x_0|| = 0$, i.e., *C* is Kadec.

(iii) By James' theorem [9], it suffices to prove that for each $x^* \in X^*$ with $q_C(x^*) = 1$ there exists $x_0 \in C$ such that $\langle x^*, x_0 \rangle = 1$. For the end, let $\{x_n\} \subset C$ satisfying

$$\lim_{n \to \infty} \langle x^*, x_n \rangle = 1.$$

Then

$$2 \ge \limsup_{n, m \to \infty} p_C(x_n + x_m) \ge \lim_{n, m \to \infty} \langle x^*, x_n + x_m \rangle = 2,$$

and

$$\lim_{n, m \to \infty} \delta_C(p_C(x_n + x_m)) = 0.$$

This, with the fact that $\delta_C(\varepsilon) > 0$ for $\forall \varepsilon \in (0, 2]$, implies that $\lim_{n \to \infty} p_C(x_n - x_m) = 0$ and consequently, $\lim_{n \to \infty} ||x_n - x_m|| = 0$ so that $\lim_{n \to \infty} ||x_n - x_0|| = 0$ and $\langle x^*, x_0 \rangle = 1$ for some $x_0 \in C$. The proof is complete.

Remark. Obviously, C is both strictly convex and Kadec if and only if so is -C.

Finally, we also need the concept of Frechet differentiability and a result on the Frechet differentiability of Lipschitz functions due to [15].

DEFINITION 2.4. Let *D* be an open subset of *X*. A real-valued function *f* on *D* is said to be Frechet differentiable at $x \in D$ if there exists an $x^* \in X^*$ such that

$$\lim_{y \to x} \frac{f(y) - f(x) - \langle x^*, y - x \rangle}{\|y - x\|} = 0.$$

 x^* is called the Frechet differential at x which is denoted by Df(x).

PROPOSITION 2.3. Let f be a locally Lipschitz continuous function on an open set D of a Banach space with equivalent Frechet differentiable norm (in particular, X reflexive will do). Then f is Frechet differentiable on a dense subset of D.

CHONG LI

3. WELL POSED GENERALIZED BEST APPROXIMATION

Let G be a closed subset of X and $x \in X$. Set

$$\lambda_{C}^{+}(x, G) = \inf_{z \in G} p_{C}(x - z).$$
(3.1)

From Proposition 2.1(v), it follows that the problem $\min_{C}(x, G)$ is well posed if and only if the minimization problem $\min_{-C}^{+}(x, G)$, which consists in finding a point $\overline{z} \in G$ satisfying $p_{-C}(x-\overline{z}) = \lambda_{-C}^{+}(x, G)$, is well posed, where the concepts of the solution, the minimizing sequence and the well posedness are defined similarly.

For notational convenience, let $d_G(x) = \lambda_C^+(x, G)$. Then, we have

PROPOSITION 3.1. (i)
$$d_G(x) - d_G(y) \le p_C(x - y), \ \forall x, y \in X;$$

(ii) $|d_G(x) - d_G(y)| \le v ||x - y||, \ \forall x, y \in X.$

Let

$$L_n(G) = \begin{cases} \inf\{\langle x^*, x - z \rangle : z \in G \cap B_C(x, d_G(x) + \delta)\} \\ x \in X \setminus G : > (1 - 2^{-n}) d_G(x), \text{ for some } \delta > 0, x^* \in X^* \\ \text{with } q_C(x^*) = 1 \end{cases},$$

where $B_C(x, r) = \{ y \in X : p_C(x - y) \leq r \}$. Also let

$$L(G) = \bigcap_{n} L_{n}(G)$$

and let

$$\Omega(G) = \left\{ \begin{array}{l} \text{there exists } x^* \in X^* \text{ with } q_C(x^*) = 1, \text{ such that for} \\ x \in X \setminus G : \text{ each } \varepsilon > 0 \text{ there is } \delta > 0 \text{ so that } \inf\{\langle x^*, x - z \rangle : \\ z \in G \cap B_C(x, d_G(x) + \delta)\} > (1 - \varepsilon) d_G(x) \end{array} \right\}.$$

Obviously, $\Omega(G) \subset L(G)$.

LEMMA 3.1. L(G) is a G_{δ} -subset of X.

Proof. To show that L(G) is a G_{δ} -subset of X, we only need prove that $L_n(G)$ is open for each n. Let $x \in L_n(G)$. Then there exist $x^* \in X^*$ with $q_C(x^*) = 1$ and $\delta > 0$ such that

$$\beta = \inf\{\langle x^*, x - z \rangle : z \in G \cap B_C(x, d_G(x) + \delta)\} - (1 - 2^{-n}) d_G(x) > 0.$$

Let $\lambda > 0$ be such that $\lambda < \min\{\frac{\delta}{2}, \frac{\beta}{2}\}$ and fix y with $||x - y|| < \lambda/\nu$. For $\delta^* = \delta - 2\lambda$, from Proposition 3.1(i), we have

$$H = G \cap B_C(y, d_G(y) + \delta^*) \subset G \cap B_C(x, d_G(x) + \delta).$$

Thus if $z \in H$,

$$\langle x^*, x-z \rangle \ge \beta + (1-2^{-n}) d_G(x)$$

and

$$\begin{split} \langle x^*, \, y - z \rangle \\ &= \langle x^*, \, y - x \rangle + \langle x^*, \, x - z \rangle \\ &\geq \beta + (1 - 2^{-n}) \, d_G(y) - p_C(x - y) - (1 - 2^{-n})(d_G(y) - d_G(x)) \\ &\geq \beta + (1 - 2^{-n}) \, d_G(y) - p_C(x - y) - p_C(y - x) \\ &\geq \beta + (1 - 2^{-n}) \, d_G(y) - 2v \, \|x - y\| \\ &\geq (1 - 2^{-n}) \, d_G(y) + \beta - 2\lambda. \end{split}$$

Then

$$\inf\{\langle x^*, y - z \rangle : z \in H\} > (1 - 2^{-n}) d_G(y)$$

and $y \in L_n(G)$ for all $y \in X$ with $v ||x - y|| < \lambda$, which implies that $L_n(G)$ is open in X.

The following factorization theorem due to Davis, Figiel, Johnson and Pelczynski [6] plays a key role in the proof of the density of $\Omega(G)$.

THEOREM DFJP. Let K be a weakly compact subset of a Banach space Y with $Y = \overline{\text{span } K}$. Then there exists a reflexive Banach space R and a one to one continuous linear mapping T: $R \mapsto Y$ such that $T(B) \supset K$.

LEMMA 3.2. If G is a closed, boundedly relatively weakly compact, non-empty subset of X, then $\Omega(G)$ is dense in $X \setminus G$.

Proof. Let $x_0 \in X \setminus G$ and $d_G(x_0) > \varepsilon > 0$. Let

$$K = \operatorname{weak} - \operatorname{cl}\{(B(0, N) \cap G) \cup \{x_0\}\},\$$

where $N = ||x|| + \frac{3d_G(x)}{\mu}$. Then K is weakly compact and if $Y = \overline{\text{span } K}$, we can apply Theorem DFJP to obtain a reflexive Banach space R and a one to one continuous linear mapping $T: R \mapsto Y$ such that $T(B) \supset K$. Define

$$f_G(u) = d_G(Tu),$$
 for each $u \in R$.

Then f_G is a Lipschitz function on R and so by Proposition 2.4 f_G is Frechet differentiable on a dense subset of R. Thus there exists differentiable point $v \in R$ of f_G with $Df_G(v) = v^*$ such that $y := Tv \in B(x_0, \varepsilon)$. This means that

$$\lim_{h \to 0} \frac{d_G(T(v+h)) - d_G(Tv) - \langle v^*, h \rangle}{\|h\|} = 0$$

and hence

$$\lim_{h \to 0} \frac{d_G(y+Th) - d_G(y) - \langle v^*, h \rangle}{p_G(h)} = 0.$$

Substituting tu for h in the previous expression and using Proposition 3.1 we have

$$\langle v^*, u \rangle \leq p_C(Tu).$$

This shows $v^* = T^*y^*$ for some $y^* \in Y^*$. Furthermore, $\langle y^*, Tu \rangle \leq p_C(Tu)$ for all $u \in R$ so that $q_C(y^*) \leq 1$ since T has dense range. By Hahn–Banach theorem we may extend y^* to x^* with $q_C(x^*) \leq 1$. Now let $\{z_n\}$ be a minimizing sequence in G for y. Then for each $1 \geq t > 0$,

$$\begin{split} d_G(y + t(z_n - y)) - d_G(y) &\leq p_C(y + t(z_n - y) - z_n) - d_G(y) \\ &= (1 - t) \ p_C(y - z_n) - d_G(y) \\ &= -tp_C(y - z_n) + [\ p_C(y - z_n) - d_G(y)]. \end{split}$$

Let $t_n = 2^{-n} + [p_C(y - z_n) - d_G(y)]^{1/2}$. Observe that

$$\lim_{n \to \infty} \frac{d_G(y + t_n(z_n - y)) - d_G(y) - t_n \langle x^*, z_n - y \rangle}{t_n} = 0.$$

We have that

$$\liminf_{n \to \infty} \left[-p_C(y - z_n) + \langle x^*, y - z_n \rangle \right] \ge 0$$

and

$$d_G(y) = \lim_{n \to \infty} p_C(y - z_n) \leq \liminf_{n \to \infty} \langle x^*, y - z_n \rangle,$$

which again shows $q_C(x^*) \ge 1$. Thus $q_C(x^*) = 1$ and

$$d_G(y) = \lim_{n \to \infty} \langle x^*, y - z_n \rangle.$$

This implies $y \in \Omega(G)$ and proves the Lemma.

THEOREM 3.1. Suppose that C is both strictly convex and Kadec. Let G be a closed, boundedly relatively weakly compact, non-empty subset of X, then the set $X_0^+(G)$ of all $x \in X$ such that the problem $\min_C^+(x, G)$ is well posed is a residual subset of X.

Proof. From Lemma 3.1 and 3.2 it suffices to prove that for each $x \in L(G)$ the problem $\min_{C}^{+}(x, G)$ is well posed. Now let $x \in L(G)$. We first show that $\min_{C}^{+}(x, G)$ has a unique solution. Suppose that $\min_{C}^{+}(x, G)$ has two solutions z_0 , z_1 . Since $x \in L(G)$, for each *n*, there exists $x_n^* \in X^*$, $q_C(x_n^*) = 1$ satisfying

$$\langle x_n^*, x - z_i \rangle > (1 - 2^{-n}) d_G(x), \quad i = 0, 1$$

so that

$$p_C(x-z_0+x-z_1) \ge \limsup_{n \to \infty} \langle x_n^*, x-z_0+x-z_1 \rangle \ge 2 d_G(x).$$

Thus, using the strict convexity of C we have $z_0 = z_1$, proving the uniqueness.

Next, let $z_n \in G$ be any minimizing sequence for x. Then $x \in L_m(G)$ for any m = 1, 2, ... It follows that there exist $\delta_m > 0$, $x_m^* \in X^*$ with $q_C(x_m^*) = 1$ such that

$$\inf\{\langle x_m^*, x-z\rangle : z \in G \cap B_C(x, d_G(x) + \delta_m)\} > (1 - 2^{-m}) d_G(x).$$

With no loss of generality, we may assume that $z_n \to z_0$ weakly as $n \to \infty$ for some $z_0 \in X$, since G is boundedly relatively weakly compact. Then we have that

$$p_C(x-z_0) \leq \liminf_{n \to \infty} p_C(x-z_n) = d_G(x).$$

We also assume that $\delta_n \leq \delta_m$ if m < n and so $z_n \in G \cap B_C(x, d_G(x) + \delta_m)$ for all n > m. Thus,

$$\langle x_m^*, x - z_n \rangle > (1 - 2^{-m}) d_G(x), \quad \forall n > m$$

so that

$$\langle x_m^*, x - z_0 \rangle > (1 - 2^{-m}) d_G(x), \quad \forall m.$$

Hence we have

$$p_C(x-z_0) \ge \limsup_{m \to \infty} \langle x_m^*, x-z_0 \rangle \ge d_G(x).$$

This shows that $p_C(x-z_0) = d_G(x)$. Now the fact that *C* is Kadec implies that $\lim_{n\to\infty} ||z_n-z_0|| = 0$ and $z_0 \in G$. Clearly, z_0 is a solution of the minimization problem $\min_C^+(x, G)$. In fact we have proved the fact that any minimizing sequence $\{z_n\} \subset G$ for *x* has a subsequence converging strongly to a solution z_0 of the problem $\min_C^+(x, G)$. Thus the uniqueness of the solution shows that z_n converges to z_0 strongly and completes the proof.

THEOREM 3.1'. Suppose that C is both strictly convex and Kadec. Let G be a closed, boundedly relatively weakly compact, non-empty subset of X, then the set $X_o(G)$ of all $x \in X$ such that the problem $\min_C(x, G)$ is well posed is a residual subset of X.

COROLLARY 3.1. Let X be reflexive. Suppose that C is both strictly convex and Kadec. Then for any closed, non-empty subset G of X, the set $X_o(G)$ of all $x \in X$ such that the problem $\min_C(x, G)$ is well posed is a residual subset of X.

COROLLARY 3.2 [3]. Suppose that $\delta_C(\varepsilon) > 0$ for $\forall \varepsilon \in (0, 2]$. Then for any closed, non-empty subset G of X, the set $X_o(G)$ of all $x \in X$ such that the problem $\min_C(x, G)$ is well posed is a residual subset of X.

THEOREM 3.2. Suppose that either X is a Banach space which is not reflexive or C is not Kadec. Then there exists a closed bounded non-empty set G in X and an open non-empty subset U of $X \setminus G$ such that for each $x \in U$ the problem $\min_{C}^{+}(x, G)$ has no solution.

Proof. Case 1. X is not reflexive. By James' theorem [9] there is $x^* \in X^*$ with $1 = q_C(x^*) > \langle x^*, y \rangle$ for each $y \in \partial C$. Let

$$G = B \cap \{ z \in X : \langle x^*, z \rangle = 0 \}$$

and

$$U = \operatorname{int} B\left(0, \frac{\mu}{2\nu + \mu}\right) \cap \{x \in X : \langle x^*, x \rangle > 0\}.$$

For $x \in U$, we will show that $d_G(x) = \langle x^*, x \rangle$ but the problem $\min_C^+(x, G)$ has no solution. Let $y_n \in C$ such that $\lim_{n \to \infty} \langle x^*, y_n \rangle = 1$ so that we may assume that $\langle x^*, y_n \rangle > 1/2$ for all *n*. If $x \in U$, set

$$z_n = x - \frac{\langle x^*, x \rangle}{\langle x^*, y_n \rangle} y_n.$$

Then

$$||z_n|| \le ||x|| + 2p_C(x) ||y_n|| \le \left(1 + 2\frac{\nu}{\mu}\right) ||x|| < 1.$$

Thus $z_n \in G$ and

$$d_{G}(x) \leq \liminf_{n} p_{C}(x - z_{n})$$

$$= \liminf_{n} p_{C}\left(\frac{\langle x^{*}, x \rangle}{\langle x^{*}, y_{n} \rangle} y_{n}\right)$$

$$\leq \liminf_{n} \frac{\langle x^{*}, x \rangle}{\langle x^{*}, y_{n} \rangle}$$

$$= \langle x^{*}, x \rangle.$$

Suppose a point $z \in G$ such that $d_G(x) = \langle x^*, x \rangle = p_C(x-z)$. Then $\langle x^*, y \rangle = 1$ for $y = \frac{x-z}{p_C(x-z)}$ which is a contradiction.

Case 2. C is not Kadec. By the definition, there exist a sequence $\{y_n\} \subset \partial C$ and a point $y \in \partial C$ such that $y_n \to y$ weakly and $\inf_{n \neq m} \|y_n - y_m\| > \delta$ for some $\delta > 0$. Let $x^* \in X^*$ with $1 = q_C(x^*) = \langle x^*, y \rangle$. Then $\lim_n \langle x^*, y_n \rangle = 1$. With no loss of generality, we may assume that $\langle x^*, y_n \rangle > 1 - 2^{-2(n+1)} > 1/2$ for all *n*. Set $z_n = (1 + 2^{-n}) y_n$ and define

$$G = \bigcup_{n} M_{n}$$

where $M_n = -z_n + B(0, \delta/3) \cap \{z \in X : \langle x^*, z \rangle = 0\}$. Then G is our desired set. First, G is norm closed. In fact, if $n \neq m$ and $u \in M_n$, $w \in M_m$ we have

$$\begin{split} \|w - u\| \ge \|y_n - y_m\| - \|y_m - z_m\| - \|y_n - z_n\| - \|z_m + w\| - \|z_n + u\| \\ \ge \delta - 2^{-m} - 2^{-n} - \delta/3 - \delta/3 > \delta/9 \end{split}$$

for sufficiently large *m*, *n*. Since each M_n is closed, *G* is closed. Next let $U = \operatorname{int} B(0, \frac{\mu\delta}{3(\mu+2\nu)})$. For $x \in U$ we will show that $d_G(x) = 1 + \langle x^*, x \rangle$ but the problem $\min_C^+(x, G)$ has no solution. For $x \in U$, set

$$w_n = x - z_n - \frac{\langle x^*, x \rangle}{\langle x^*, y_n \rangle} y_n.$$

Then

$$\|w_n + z_n\| \le \|x\| + 2p_C(x) \|y_n\| \le \left(1 + 2\frac{\nu}{\mu}\right) \|x\| < \frac{\delta}{3}$$

while $\langle x^*, w_n + z_n \rangle = 0$. Thus $w_n \in M_n$ and

$$\begin{aligned} d_G(x) &\leq \liminf_n p_C(x - w_n) \\ &\leq \liminf_n p_C \left(z_n + \frac{\langle x^*, x \rangle}{\langle x^*, y_n \rangle} y_n \right) \\ &\leq \liminf_n \left(1 + 2^{-n} + \frac{\langle x^*, x \rangle}{\langle x^*, y_n \rangle} \right) \\ &= 1 + \langle x^*, x \rangle. \end{aligned}$$

Now if $z \in G$ then $z \in M_n$ for some *n* and

$$\begin{split} \langle x^*, z \rangle &= \langle x^*, -z_n \rangle = -(1+2^{-n}) \langle x^*, y_n \rangle \\ &\leqslant -(1+2^{-n})(1-2^{-2(n+1)}) < -1. \end{split}$$

Therefore

$$p_{C}(x-z) \ge \langle x^{*}, x \rangle - \langle x^{*}, z \rangle > 1 + \langle x^{*}, x \rangle$$

and $d_G(x) = 1 + \langle x^*, x \rangle$ but the problem $\min_C^+(x, G)$ has no solution for $x \in U$. The proof is complete.

The following theorem is a generalization of the result on the characterization of strongly convex Banach spaces, which is due to Konjagin [10] and Borwein and Fitzpatrick [1].

THEOREM 3.3. The following statements are equivalent

- (1) X is reflexive and C is both strictly convex and Kadec.
- (2) The function q_c on X^* is Frechet differentiable.

(3) For any closed subset G of X, the set $X_o(G)$ is a dense G_{δ} subset of $X \setminus G$.

(4) For any closed subset G of X, the set $X_o(G)$ is a dense subset of $X \setminus G$.

Proof. $(1) \Rightarrow (3)$ results from Corollary 3.1, while $(3) \Rightarrow (4)$ is trivial.

(4) \Rightarrow (1) by Theorem 3.2 it suffices to prove that *C* is strictly convex. Suppose on the contrary that there exists two distinct elements, say *a*, $b \in \partial C$, such that $p_C(a+b) = p_C(a) + p_C(b)$. Take $x^* \in X^*$ with $q(x^*) = 1$ and $\langle x^*, a+b \rangle = 2$, so that $\langle x^*, a \rangle = \langle x^*, b \rangle = 1$. Let

$$G = \{ x \in X \colon \langle x^*, x \rangle = 0 \}.$$

Then for any $x \in X$ with $\langle x^*, x \rangle > 0$ there are always multiple solutions to the problem $\min_{C}^{+}(x, G)$. Indeed, $d_{C}(x) = \langle x^*, x \rangle$ and a, b are two solutions to the problem $\min_{C}^{+}(x, G)$.

Now let us prove the equivalence of (1) and (2). For this end, let

$$C^{**} = \{ x^{**} \in X^{**} : \langle x^*, x^{**} \rangle \leq q_C(x^*), \forall x^* \in X \}.$$

Then $C \subset C^{**}$ and $q_C(x^*) = \sup_{x^{**} \in C^{**}} \langle x^*, x^{**} \rangle$. Note that q_C is a Minkowski gauge on X^* , i.e., a nonnegative continuous sublinear functional. Thus from Proposition 5.11 of [14] we have

PROPOSITION 3.2. q_C is Frechet differentiable at x^* with $Dq_C(x^*) = x^{**}$ if and only if $x^{**} \in C^{**}$ is weakly* strongly exposed by x^* in the sense that for any $\{x_n^{**}\} \subset C^{**}$

$$\langle x^*, x_n^{**} \rangle \rightarrow q_C(x^*)$$
 implies $||x_n^{**} - x^{**}|| \rightarrow 0.$

(1) \Rightarrow (2) Observe that $C^{**} = C$ as X^* is reflexive. Thus for any $\{x_n\} \subset C$ with $\langle x^*, x_n \rangle \rightarrow q_C(x^*)$, with no loss of generality, assume that $x_n \rightarrow x$ weakly for some $x \in C$ so that $\langle x^*, x \rangle = q_C(x^*)$. This implies that $p_C(x_n) \rightarrow p_C(x)$. It follows from the fact that C is both strictly convex and Kadec that $||x_n - x|| \rightarrow 0$. Hence $x \in C$ is weakly* strongly exposed by x^* and q_C is Frechet differentiable at x^* with $Dq_C(x^*) = x$.

(2) \Rightarrow (1) For any two $x, y \in \partial C$ with $p_C(x+y) = p_C(x) + p_C(y)$, let $x^* \in X^*$ satisfying $q_C(x^*) = 1$ and $\langle x^*, x+y \rangle = 1$. Then $\langle x^*, x \rangle = \langle x^*, y \rangle = 1$ which, by Lemma 5.10 of [14], implies that $x = y = Dq_C(x^*)$ since q_C is Frechet differentiable at x^* , proving the strict convexity of C. As to the reflexivity, by James' theorem [9], it suffices to show for each $x^* \in X^*$ with $q_C(x^*) = 1$ there exists $x \in C$ such that $\langle x^*, x \rangle = 1$. Let $\{x_n\} \subset C$ such that $\langle x^*, x_n \rangle \rightarrow 1$ and let $x^{**} = Dq_C(x^*)$. Then we have

 $||x_n - x^{**}|| \to 0$ from Proposition 3.2 so that $x^{**} \in C$ and $\langle x^*, x \rangle = 1$, completing the proof of the reflexivity. Finally, for the Kadec property of *C*, let $\{x_n\} \subset \partial C$ satisfying $x_n \to x_0$ weakly for some $x_0 \in \partial C$ and let $x_0^* \in X^*$ with $q_C(x^*) = 1$ and $\langle x_0^*, x_0 \rangle = 1$. Then $x_0 = Dq_C(x^*)$ and $\langle x^*, x_n \rangle \to 1$. Using Proposition 3.2 again, we have $||x_n - x_0|| \to 0$. The proof is complete.

Remark. Theorem 3.3 extends the results due to Konjagin [10] and Borwein and Fitzpatrick [1].

REFERENCES

- J. M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces, *Canad. J. Math.* 41 (1989), 707–720.
- M. M. Coban, P. S. Kenderov, and J. P. Revalski, Generic well-posedness of optimization problems in topological spaces, C. R. Acad. Bulgare Sci. 42 (1989), 11–14.
- F. S. De Blasi and J. Myjak, On a generalized best approximation problem, J. Approx. Theory 94 (1998), 54–72.
- F. S. De Blasi, J. Myjak, and P. L. Papini, Starshaped sets and best approximation, Arch. Math. 56 (1991), 41–48.
- F. S. De Blasi, J. Myjak, and P. L. Papini, Porous sets in best approximation theory, J. London Math. Soc. (2) 44 (1991), 135–142.
- J. Diestel, "Geometry of Banach Spaces-Selected Topic," Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, New York, 1975.
- A. Dontchev and T. Zolezzi, "Well Posed Optimization Problems," Lecture Notes in Mathematics, Vol. 1543, Springer-Verlag, New York, 1993.
- 8. M. Edelstein, Weakly proximal sets, J. Approx. Theory 18 (1976), 1-8.
- R. C. James, Reflexivity and the supremum of linear functionals, *Israel J. Math.* 13 (1972), 289–300.
- S. V. Konjagin, On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces, *Soviet Math. Dokl.* 21 (1980), 418–422.
- K. S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, *Indiana Univ. Math. J.* 27 (1978), 791–795.
- 12. C. Li, Almost K-Chebyshev subsets, Acta Math. Sinica 33 (1990), 251-259. [Chinese]
- C. Li and X. H. Wang, Almost Chebyshev set with respect to bounded subsets, *Sci. China Ser. A* 40 (1997), 375–383.
- R. R. Phelps, "Convex Functions, Monotone Operators and Differentiability," Lecture Notes in Mathematics, Vol. 1364, Springer-Verlag, New York, 1989.
- D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), 312–345.
- S. B. Stechkin, Approximation properties of sets in normed linear spaces, *Rev. Roumaine Math. Pures Appl.* 8 (1963), 5–18. [Russian]